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Abstract—We study a crowdsourcing aided road traffic esti-
mation setup, where a fraction of users (vehicles) are malicious,
and report wrong sensory information, or even worse, report
the presence of Sybil (ghost) vehicles that do not physically
exist. The motivation for such attacks lies in the possibility
of creating a “virtual” congestion that can influence routing
algorithms, leading to “actual” congestion and chaos. We
propose a Sybil attack-resilient traffic estimation and routing
algorithm that is resilient against such attacks. In particular,
our algorithm leverages noisy information from legacy sensing
infrastructure, along with the dynamics and proximity graph
of vehicles inferred from crowdsourced data. Furthermore,
the scalability of our algorithm is based on efficient Boolean
Satisfiability (SAT) solvers. We validated our algorithm using
real traffic data from the Italian city of Bologna. Our algorithm
led to a significant reduction in average travel time in the
presence of Sybil attacks, including cases where the travel time
was reduced from about an hour to a few minutes.

Keywords-Secure Smart transportation systems; Sybil at-
tacks; resilient routing;

I. INTRODUCTION

Smart transportation systems hold the promise of rad-

ical changes in our daily life. In such systems, sensory

information is being collected on an unprecedented scale

from vehicles as well as legacy infrastructure (e.g., loop

sensors). The data collection mechanism itself has under-

gone revolutionary changes. Mobile apps like Waze [1]

have enabled millions of users to report real-time traffic

information; such crowdsourced information is then used

to influence routing recommendations. Government agen-

cies, which own the legacy sensing infrastructure, are also

actively exploring ways to leverage the data collected by

apps like Waze [2] for improving their services. Along with

such revolutionary changes in data collection, the sensing

capabilities of vehicles have also dramatically increased over

time. According to market reports [3], the semi-autonomous

vehicles’ market was estimated to be 3.17 million units in

2016 and is projected to reach 7.84 million units by 2021.

Semi-autonomous and autonomous vehicles can easily infer

the position and velocity of nearby vehicles (e.g., through

LIDAR and computer vision based methods). Hence, in a

crowdsourcing setup, users can not only report their current

traffic situation, but they also have the resources to report

information regarding their neighbors on the road even

without direct vehicle-to-vehicle communication. Given the
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seriousness of traffic congestion in major cities around the

world, it is of significant interest to develop applications

leveraging such superior sensing capabilities of vehicles

as well as the power of crowdsourcing backed mobile

apps like Waze. A natural direction, towards building such

applications, is to try to have better real-time estimates of

road traffic conditions and decide routing recommendations

accordingly. To do so in a secure manner (i.e., resilient to

dishonest and fake users) is the primary motivation of this

paper.

Crowdsourced data collection methods and subsequent

estimation algorithms leave open the possibility of new

methods for attacking transportation networks. For example,

in 2014, the vulnerability of Waze app to fake accounts was

linked to fake traffic jams [4]. In fact, even a very small

number of fake cars can lead to severe traffic jams [5], [6].

Such Sybil attacks, where an attacker creates fictitious cars

(users), and then reports false information are not unheard

of; they are quite prevalent in peer-to-peer networks [7]

and online social networks [8], [9]. Existing approaches

for mitigating such Sybil attacks include: (i) graph-based

methods [6], [8], [10]–[12], and (ii) authentication-based on

wireless signals [13]–[16]. Graph-based methods primarily

rely on the assumption that fake users have difficulty getting

connected to real users, and tend to form closed clusters

within themselves (i.e., the structure of proximity graph).

Such assumption is violated in traffic systems since a real

car can be the one that launches the Sybil attack in which

case the Sybil cars can report precisely the dishonest car.

Since this dishonest car physically exists and hence will be

reported by the other real cars which themselves are reported

by other real cars, the assumption that Sybil cars form closed

clusters within themselves no longer holds. Therefore, algo-

rithms based on such heuristic are not guaranteed to detect

the existence of Sybil attacks. Authentication methods based

on wireless signals are closely tied to the physical layer

properties of wireless signals. For example, [16] created

spatial fingerprints based on the multipath propagation of

wireless signals; this suffers from free space environments

(i.e., the absence of multipath).

Directly applying existing Sybil attack mitigation methods

(as mentioned above) to the scenario we consider in this

paper (i.e., traffic estimation and routing based on crowd-

sourced data) will miss a significant aspect: a transportation

system is necessarily a dynamical system whose state evo-
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of what happens when the crowdsourced information, re-

ported by different vehicles, is corrupted in an orchestrated

fashion. Such corrupted data can be either due to a phys-

ical attack on sensors [26], [27], an attack on the vehicle

software, or due to an attack on the communication channel

between the vehicles and the infrastructure. Regardless of

how the attack is taking place, we consider the following

two threat models:

1) False data injection attack: In such attack, a car that

physically exists on the road is reporting maliciously

corrupted information (wrong position, speed, and/or

speed of nearby vehicles). We refer to these cars as

dishonest cars.

2) Sybil attack: In this attack, a car which physically

exists on the road reports the presence of nearby cars

that do not physically exist (ghost cars). Those ghost

cars may also report the presence of more nearby ghost

cars which in turn report the presence of more ghost

cars until a chain of ghost cars are created. Creating

such a chain of ghost cars will allow the attacker

to gain a disproportionately large influence on the

crowdsourced data reported to the traffic infrastructure

and hence affect its routing decisions. Following the

same terminology of attacks on reputation systems, we

refer to these ghost cars as Sybil cars [7].

To understand the consequences of an orchestrated Sybil

attack, we consider the situation reported in Figure 2 in

which a malicious car (red) is traveling on a highway

with light traffic conditions (moderate density/congestion

and high average velocity). This malicious car launches a

Sybil attack in which it faithfully reports its position but

reports a lower traveling speed along with the presence of

Sybil cars (yellow) in its surrounding. Next, the attacker

takes the identity of one of those Sybil cars to report the

presence of more Sybil cars creating a long chain of Sybil

cars. All these Sybil cars are reporting a consistent low

traveling speed. As a consequence, the traffic controller

will indicate an erroneous heavy traffic condition (high

density/congestion and low traveling speed) in this particular

sector. This incorrect heavy traffic conditions will force the

traffic controller to re-route honest cars (green) into the

sideways in an attempt to reduce the congestion of the

highway and hence maximize the performance of the traffic

system. Finally, this diversion will create actual heavy traffic

on the side road leading to worse traffic in the whole system.

The primary goal of this paper is to design resilient

traffic estimation algorithms that are capable of identify-

ing the existence of such attacks and isolate the set of

maliciously reported information. Similarly to the previous

work on secure state estimation [17], [18], [21], [28], we

assume no prior knowledge of the temporal, magnitude,

or stochastic properties of the attack. However, differently

from the previous work on secure state estimation where

the maximum number of malicious information is known

a priori, we assume no such prior information. We only

assume that the attacker has no access to the data collected

by the legacy sensors (secure sensors). That is, while the

attacker may compute an estimate of these measurements,

he does not have direct access to them. We argue in this

paper that these, typically low-quality, noisy, and spatially

sparse sensor measurements, are enough to detect and isolate

such attacks.

Finally, we assume that the cloud-based traffic controller

is honest in the sense that it computes the optimal routing

information based on the received sensor information.

B. A Note on Confidentiality Attacks

According to the threat model discussed in the previous

section, we consider only “active” attacks in which the

attacker corrupts the integrity of the sensory information

exchanged crowdsourced and exchanged within the system.

Another related concern is the privacy or the confidentiality

of this sensor information which are shared by the users with

the traffic infrastructure. In this paper, and to solicit partic-

ipation from users, we assume that all sensor and routing

information exchanged between the individual cars and the

traffic controller are encrypted before sent on the network (to

prevent eavesdropping in the network). This can be achieved

using a public key encryption scheme. Moreover, we assume

that all computations at the traffic controller are executed

using a trusted computation platform (e.g., secure enclaves

in Intel SGX) which prevents other software running on the

traffic controller from accessing the shared sensor informa-

tion. Such technologies are adopted and featured by many

cloud servers (e.g., Microsoft Azure [29]) to provide secure

cloud computing. Therefore, within this paper, will focus

only on active integrity attacks as discussed in the previous

subsection.

III. ATTACK DETECTION USING PHYSICS BASED TRUST

PROPAGATION

Trust propagation is a cyber-security principle by which

new trust relationships can be derived from pre-existing

trust relationship. That is, in each system, we start by

searching for a subsystem (a hardware component, software,

or authority) that can always be trusted. Such subsystem is

typically named the root-of-trust. Next, we use this root-of-

trust along with a set of rules named trust transitivity and

trust fusion to “propagate” the trust embodied in the root-of-

trust subsystem into a trust in the rest of subsystems [30].

This principle has been extensively used in software and

hardware security [31], and secure recommendation in social

networks [32]. In this section, we discuss how to use the

same principle to build attack-resilient traffic systems. In

particular, we identify roots-of-trust in the traffic system

along with defining rules for trust propagation across the

traffic network.
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velocity for all sectors which are not instrumented by

inductive loop sensors [25], [35]. However, the quality of

the produced estimate deteriorates in the sectors that are

further away from the loop sensors. We denote by v̂lk, ρ
l
k(t)

(with k ∈ {1, . . . ,K}) the estimates that are produced by

the extended Kalman filter developed in [25], [35] where

the superscript l reflects the fact that these estimates are

computed using the information collected from the legacy

sensors only. In other words, using the physics-based model

(equations (1)-(2)), we can propagate the information col-

lected from the root-of-trust (legacy sensors) to create a

noisy estimate for the traffic state for all the sectors in the

transportation network which will be used later to detect and

mitigate attacks.

C. Resilient Traffic Estimator

The proposed resilient estimator works as follows. First,

we use the position information pi reported by individual

cars to associate them with the corresponding traffic sectors.

The next step is to enumerate all possible subsets of vehicles

whose sensors report consistent information. An example

of inconsistent information is when car A indicates the

presence of car B in its neighborhood without car B

reporting A. This case would occur when:

• A Sybil car (car A) reports the presence of an honest

car (car B). Being honest, car B does not participate

in the Sybil attack and hence is not aware of the

existence of the Sybil car (car A) and won’t report car

A accordingly.

• A dishonest car (car B), which physically exist on

the road, decides not to report the presence of an

honest nearby vehicle (car A) in an attempt to disturb

the traffic estimation. On the other side, the honest

vehicle reports the presence of the dishonest car in its

neighborhood faithfully.

From these two cases, we note the following. In the first

case, the attacker vehicle is the one providing information

about the presence of another car (honest) while in the

second instance the honest vehicle is the one that provided

the information about the presence of the other vehicle

(dishonest). That is, while inconsistencies between reported

information can be used to detect the existence of an

attack, information inconsistencies cannot be directly used

to identify the malicious vehicle. Moreover, and as discussed

in Section II-A, we do not assume the prior knowledge of

the maximum number of Sybil and dishonest cars. This, in

turn, eliminates the possibility of using heuristics based on

the size of vehicles reporting consistent information. Finally,

we note that the same vehicle may belong to more than

one subset of cars which report consistent information. We

denote by Sk the set whose elements are all the subsets

of vehicles reporting consistent information inside the kth

sector. Details of computing Sk are given in the subsequent

subsections.

Once the set Sk is computed, we use the trusted informa-

tion collected by the legacy sensors and propagated through

the entire traffic system using the physics-based model

(equations (1)-(2)) to sanitize the data received from each

subset of cars in Sk. In particular, for each subset of vehicles

with consistent information Sk ∈ Sk, we compute the

average discrepancy (over a window of length N ) between

their reported velocities and the velocity estimated by the

legacy sensors v̂lk as:

êSk
(t) =

1

N

t1+N−1
∑

t=t1

(v̂Sk
(t)− v̂lk(t))

2 ∀Sk ∈ Sk

where v̂Sk
(t) is the average speed among all vehicles

indexed by the set Sk, i.e.,

v̂Sk
(t) =

1

|Sk|

∑

i∈Sk

vi

and |Sk| is the cardinality of the set Sk (which corresponds

to the number of cars inside this set). The final step is to

choose the subset of vehicles S∗

k which lead to the minimum

discrepancy, i.e.,

S∗

k = argmin
Sk

êSk

The final estimate of the traffic average speed is then

computed using only the information provided by the cars

indexed by the set S∗

k as follows:

v̂S∗

k
(t) =

1

|S∗

k |

∑

i∈S∗

k

vi(t)

Traffic density and congestion can also be computed directly

from the estimated average velocity and the maximum

allowed velocity in the kth sector.

In other words, the noisy estimates that are provided by

the legacy sensors and propagated using the physics-based

model—which in turns adds more noise and hence reduces

its estimation quality—are used only to identify which

set of vehicles are reporting honest information. The final

estimate of the traffic information is computed using the data

published by the honest cars which are assumed to be more

accurate. This procedure is summarized in Algorithm 1. It

follows from our analysis in Section IV that Algorithm 1

is optimal. In particular, Algorithm 1 can select the subset

of vehicles S∗

k whose reported information is the closest

to the ground truth regardless the fact that noisy estimates

produced by legacy sensors v̂lk(t) are used to select the

subset S∗

k .

D. Enumerating all consistent vehicles using SAT solver

Enumerating all sets of consistent cars Sk is a combi-

natorial search problem in which one needs to take into

account different combinations of whether each vehicle is

honest/dishonest/Sybil. Therefore, to enumerate all possible
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Algorithm 1 Resilient Traffic Estimator

Input: car1, . . . , carnk
, v̂lk Output: v̂k(t)

1: Enumerate all sets of consistent cars

Sk = ENUMERATE-CONSISTENT-CARS(car1, .., carnk
)

2: for Each consistent set of cars Sk ∈ Sk

do

3: Compute the average velocity reported by cars:

v̂Sk
(t) =

1

|Sk|

∑

i∈Sk

vi

4: Compute the discrepancy in reported velocity:

êSk
(t) =

1

N

t1+N−1
∑

t=t1

(v̂Sk
(t)− v̂lk(t))

2

5: end for

6: Choose the set with lowest discrepancy:

S∗

k = argmin
S

êSk

7: Compute the traffic state reported by S∗

k :

v̂S∗

k
(t) =

1

|S∗

k |

∑

i∈S∗

k

vi(t)

8: Return v̂S∗

k
(t)

solutions, we resort to automated reasoning techniques in

which the problem is encoded as a set of constraints and

a solver is then used to enumerate all possible solutions to

these set of constraints. The set Sk corresponds to all the

solutions of these constraints.

We start by defining two Boolean variables for each car

in the kth sector. The first Boolean variable ISSYBILi is set

to zero whenever the ith vehicle is assumed to be physically

present and one if the vehicle is assumed to be a Sybil

car. The second Boolean variable ISHONESTi is set to zero

whenever the vehicle is assumed to be dishonest and one

otherwise. Indeed, whenever a car is honest, then it is also

not Sybil and the following constraint is generated for each

vehicle:

ISHONESTi ⇒ ¬ISSYBILi (3)

The next step is to define a rule that checks whether each

pair of cars is reporting consistent information. To that end,

we define the Boolean variable VELMATCHINGi,j for each

pair of cars. This Boolean variable should be set to one if the

velocity of the jth car reported by itself is matching the one

reported by the ith car radar and vice versa. This constraint

can be encoded as:

VELMATCHINGi,j ⇔ |vi − vij | ≤ ε ∧ |vj − v
j
i | ≤ ε

Using these three Boolean variables, we can encode

all different scenarios. Note that we generate constraints

governing only the scenarios that occur between each pair of

cars. However, the solution to all the generated constraints

will lead to solutions that consider transitivity between

different car agreements. That is, if the reports from car

A and B are consistent as well as those from B and C, the

solution to this set of constraints will ensure that cars A,B

and C are considered consistent together.

The first scenario is when both the two vehicles report the

presence of each other. In such scenario, if both cars report

consistent velocity information, then there is a possibility

that both cars are honest. The fact that two cars are mutually

reporting their presence could stem from the case when

both cars are Sybil, one car is Sybil while the other one is

dishonest, or one of the cars is honest while the second one

is dishonest but not Sybil. The following set of constraints

capture all these different scenarios and are generated only

when the two cars i and j report the presence of each other

as a nearby car:

(VELMATCHINGi,j ∧ ISHONESTi ∧ ISHONESTj)

∨(ISHONESTi ∧ ¬ISHONESTj ∧ ¬ISSYBILj)

∨(¬ISHONESTi ∧ ¬ISHONESTj)

∨(ISSYBILi ∧ ISSYBILj) (4)

Similarly, when only one of the cars i and j report the

presence of the other as a nearby car, this rules out the

possibility that both the cars are honest. This leaves the

possibility that one of the two cars is honest while the

other is dishonest/Sybil or that both cars are dishonest/Sybil

cars. The following set of constraints capture these different

scenarios and are generated only when the ith car report the

jth car as a nearby car but not vice versa:

(ISHONESTi ∧ ¬ISHONESTj ∧ ¬ISSYBILj)

∨(ISHONESTi ∧ ISSYBILj)

∨(¬ISHONESTi ∧ ¬ISSYBILi ∧ ¬ISHONESTj ∧ ¬ISSYBILj)

∨(¬ISHONESTi ∧ ¬ISSYBILi ∧ ISSYBILj)

∨(ISSYBILi ∧ ISSYBILj) (5)

Finally, in order to enumerate all possible solutions of

the constraints (3)-(5), we use a Boolean satisfiability solver

(SAT solver). Invoking the SAT solver with constraints (3)-

(5) will result into one assignment of the Boolean variables,

ISHONESTi, ISSYBILi, to zeros and ones indicating one

possible set of consistent and honest cars. This possible set

of honest car is then added to the set Sk. Recall that we are

interested in enumerating all possible sets of honest cars that

satisfy the constraints (3)-(5). Therefore, we need to invoke

the SAT solver multiple times until no more possible sets of

honest cars can be found. To ensure that the SAT solver will

not produce the same assignment multiple times, we need

to add the following constraint iteratively:
∨

i∈Sk

¬ISHONESTi ∀Sk ∈ Sk
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Algorithm 2 Enumerate-Consistent-Cars-SAT-Solver

Input: car1, . . . , carnk
Output: Sk

1: Sk = ∅
2: Add the following constraints to the SAT solver:

ISHONESTi ⇒ ¬ISSYBILi ∀i ∈ {1, . . . , nk}
3: for i, j ∈ {1, . . . , nk} and i 6= j do

4: if |vi − vij | ≤ ε ∧ |vj − v
j
i | ≤ ε then

5: VELMATCHINGi,j := True

6: end if

7: if both cari and carj report each

other: then

8: Add the following constraints to the SAT solver:

(VELMATCHINGi,j ∧ ISHONESTi ∧ ISHONESTj)

∨(ISHONESTi ∧ ¬ISHONESTj ∧ ¬ISSYBILj)

∨(¬ISHONESTi ∧ ¬ISHONESTj)

∨(ISSYBILi ∧ ISSYBILj)

9: end if

10: if cari reports carj but not vice

versa: then

11: Add the following constraints to the SAT solver:

(ISHONESTi ∧ ¬ISHONESTj ∧ ¬ISSYBILj)

∨(ISHONESTi ∧ ISSYBILj)

∨(¬ISHONESTi ∧ ¬ISSYBILi ∧ ¬ISHONESTj

∧ ¬ISSYBILj)

∨(¬ISHONESTi ∧ ¬ISSYBILi ∧ ISSYBILj)

∨(ISSYBILi ∧ ISSYBILj)

12: end if

13: end for

14: while SAT solver can not find more

solutions do

15: (ISHONESTi, ISSYBILi) = SAT-solver()
16: S = {i | ISHONESTi = 1}
17: Sk = Sk ∪ S

18: Add the following constraints to the SAT solver:
∨

i∈S ¬ISHONESTi

19: end while

20: Return Sk

whenever a new assignment of honest cars Sk is added to

the set Sk. The above constraint prevents the SAT solver

from generating an assignment that was produced previously.

Algorithm 2 summarizes the above discussion.

E. Enumerating all consistent cars using Majority voting

The Boolean encoding in Algorithm 2 uses two Boolean

variables for each vehicle in the kth sector. This leads to a

search space of size equal to 22nk where nk is the number of

cars in the kth sector. To harness this combinatorial growth

in the search space, we propose a heuristic that will lead to

a search space equal to 2nk which is significantly smaller

than the original search space.

The basic idea is to use only one Boolean variable

ISHONESTi for each vehicle in the kth sector of the traffic

network. This Boolean variable is used to enumerate all

the cases of whether the ith vehicle is honest or dishon-

est/Sybil. Similarly to the previous encoding, we focus

only on generating constraints governing the interactions

between each pair of cars and let the SAT solver find

assignments that satisfy the connectivity of the aggregate

reported information. We proceed with case analysis as

follows. The first scenario is when both car i and car j

report their mutual presence consistently. In such case, either

both cars are honest, both the cars are Sybil and mutually

report their presence in the same neighborhood, or even

worse a dishonest car is launching a Sybil attack and hence

reports the presence of another Sybil car in its neighborhood.

The last case occurs when an honest vehicle is reporting a

dishonest vehicle while the dishonest vehicle maliciously

reports back information consistent with the honest one. All

these cases can be encoded as:

(ISHONESTi ∧ ISHONESTj)

∨(¬ISHONESTi ∧ ¬ISHONESTj)

∨(ISHONESTi ∧ ¬ISHONESTj)

∨(¬ISHONESTi ∧ ISHONESTj) (6)

The second scenario is when the jth vehicle reports the

presence of the ith one but not vice versa. This inconsistency

in the reported information eliminates the case when both

vehicles are honest and can leave all other possibilities. This

can be encoded as:

∨(¬ISHONESTi ∧ ¬ISHONESTj)

∨(ISHONESTi ∧ ¬ISHONESTj)

∨(¬ISHONESTi ∧ ISHONESTj) (7)

Note that the constraints generated in (6)- (7), do not take

consistency in reported velocities into considerations but

only consistency in reporting mutual presence. Therefore,

the subsets of cars returned by this encoding may not contain

consistent velocity information. The next step is then to use

a majority voting over noisy measurements to obtain a robust

velocity estimate for each subset of vehicles, i.e., we replace

line 3 in Algorithm 1 with:

v̂S(t) = NoisyMajorityVotingi∈S(vi)

Our heuristic is that the majority voting will be able

to remove the effect of inconsistencies between reported

vehicle information and filters out malicious reports from

the subsets dominated by honest vehicles. We refer to this

scheme as Majority-voting based scheme and refer to the

one in Algorithm 2 as a SAT-based scheme.
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Algorithm 3 Enumerate-Consistent-Cars-Majority-Voting

Input: car1, . . . , carnk
Output: Sk

1: Sk = ∅
2: for i, j ∈ {1, . . . , nk} and i 6= j do

3: if Car both cari and carj report each

other: then

4: Add the following constraints to the SAT solver:

(ISHONESTi ∧ ISHONESTj)

∨(¬ISHONESTi ∧ ¬ISHONESTj)

∨(ISHONESTi ∧ ¬ISHONESTj)

∨(¬ISHONESTi ∧ ISHONESTj)

5: end if

6: if cari reports carj but not vice

versa: then

7: Add the following constraints to the SAT solver:

∨(¬ISHONESTi ∧ ¬ISHONESTj)

∨(ISHONESTi ∧ ¬ISHONESTj)

∨(¬ISHONESTi ∧ ISHONESTj)

8: end if

9: end for

10: while SAT solver can not find more

solutions do

11: ISHONESTi = SAT-solver()
12: S = {i | ISHONESTi = 1}
13: Sk = Sk ∪ S

14: Add the following constraints to the SAT solver:
∨

i∈S ¬ISHONESTi

15: end while

16: Return Sk

F. Trusted Cars: Yet Another Root-of-Trust

So far, we based the proposed estimator on the fact that

legacy sensors provide a root-of-trust whose trust can be

propagated through the entire network to identify malicious

behaviors. We note that another possible root-of-trust is the

sensory information collected from attack-proof vehicles like

police cars for example. That is, one can argue that such

vehicles, although corresponding to a small number of cars

in the whole system, can be equipped with hardware that is

tamper proof and guaranteed to report correct information.

This information needs to be propagated through the traffic

network to identify malicious behaviors. Thanks to the

Boolean encoding discussed in the previous two subsections,

we can utilize this additional root-of-trust by assigning the

corresponding Boolean variables ISHONESTi to True. This,

in turn, forces the SAT solver to consider only the subsets of

cars which report information consistent with these trusted

cars.

IV. THEORETICAL GUARANTEE

In this section, we discuss the theoretical guarantees for

Algorithm 1 when utilizing the SAT-based scheme. In our

analysis, we assume that the velocity estimates computed by

the Kalman filter v̂l(t) from the legacy sensors are equal to

the ground truth of the traffic state corrupted by a Gaussian

noise η(t) with zero mean and unknown variance, i.e.,

v̂l(t) = v(t) + η(t)

Note that for simplicity of notation, we drop the subscript

k in our analysis. In particular, we show that Algorithm 1

is “optimal” and reports back a traffic state estimate whose

quality (or error) is the closest to the one reported by the

honest (or “attack-free” vehicles). This is captured by the

following theorem whose proof can be found in [36].

Theorem 1. Consider the traffic system under false data

injection and Sybil attacks. Let Sh denote the set of honest

and attack-free vehicles. The resilient traffic state estimator

in Algorithm 1 (which utilizes the SAT-based scheme) returns

an estimate v̂S∗(t) such that:

(

1

N

t1+N−1
∑

t=t1

E (v̂S∗(t)− v(t))

)

≤

(

1

N

t1+N−1
∑

t=t1

E (v̂Sh
(t)− v(t))

)

.

That is, while the legacy sensors are subject to noise η

with unknown and possibly large variance (and hence the

estimate v̂l(t) can be far away from the ground truth), Al-

gorithm 1 can select a subset of vehicles whose information

is the closest possible, in expectation, to the ground truth

velocity.

V. CASE STUDY: BOLOGNA CITY

To validate our proposed method, we conducted experi-

ments using real traffic data from the Italian city of Bologna,

using the Bologna Ringway dataset [24], [37], [38]. This

dataset covers a typical day’s traffic between 8:00 am and

9:00 am (rush hour), with more than 22000 vehicles; the

corresponding heat map, showing typical congestion regions,

is given in Figure 3. For our experiments, we follow the

Simulation of Urban MObility (SUMO) [39] based simu-

lation methodology for the Bologna dataset [37], [38]. An

interesting feature of the dataset is that, during rush hour,

commuters mostly drive from residential areas (outside the

ring) towards different parts of downtown (inside the ring)

where offices and commercial spaces are located [38]. Most

of the traffic flow along the ringway since commuters use the

fast-transit ringway and enter the inner part of the city when

they are close to their destination. In our experiments, we

focus on routes whose start and end points are at different
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Figure 5. Cardinality of the set Sk (i.e., number of subsets of consistent cars) for an increasing number of trusted cars (left) using SAT-based scheme
and (right) majority-voting based scheme.

of the honest cars decreases, as a result of the increase

in the density of dishonest vehicles, the proposed resilient

estimator is not able to find enough vehicle measurements

at each sector leading to an increase in the root mean square

error.

Next, we consider the effect of increasing the noise level

in the legacy sensors in Figure 4(middle). Since the non-

secure estimator does not take into account the data collected

from the infrastructure, the estimation quality of the non-

secure estimator is not affected by the noise level in the

legacy sensors. On the other hand, when the noise level

in the legacy sensors increases, the quality of the proposed

estimator slightly decreases. Nevertheless, the proposed esti-

mator is still capable of distinguishing honest cars and hence

provides a better estimate of the traffic velocity compared

to the non-secure estimator. Again, we notice a comparable

performance between both the SAT-based scheme and the

majority-based scheme.

Finally, we report in Figure 4 (bottom) the performance

results when the malicious (dishonest and Sybil) vehicles

increase their attack level by reporting velocities further

away from the ground truth velocity. On one side, as the

reported velocities deviate more from the ground truth, the

quality of the non-secure estimator reduces significantly.

On the other side, the proposed resilient estimator is less

sensitive to the attack level thanks to its ability to select the

subset of cars that report the best traffic information.

B. Experiment 2: Number of consistent sets

In this experiment, we report on the number of combi-

nations (subsets of vehicles) that are produced by the SAT

solver, i.e., the cardinality of the set Sk. Figure 5 shows the

number of subsets of vehicles for both the SAT-based and the

majority-voting based schemes (averaged across all sectors)

at each minute of the simulation interval. As expected, the

number of combinations generated by the majority-voting

based scheme is consistently smaller than those generated

by the SAT-based scheme.

Next, we consider how the number of subsets of vehicles

is affected by the existence of trusted cars. Recall that

whenever a trusted car is present, we force the SAT solver

to restrict its search to these subsets of vehicles whose infor-

mation is consistent with those reported by the trusted cars.

This leads to examining a smaller number of combinations.

This fact is reflected in the results shown in Figure 5. In

particular, these results show that even a small number of

trusted cars (1%− 5%) in the whole traffic system can lead

to a significant decrease in the number of subsets of vehicles

“primarily” in the majority-voting scheme. This decrease

in the number of subsets of vehicles, in turn, affects the

scalability of the proposed schemes.

C. Experiment 3: Average Travel Time

In this experiment, we consider the performance of the

whole traffic system measured by the average travel time

for the injected vehicles. The recorded average travel time

is reported in Figure 6 for two attacker scenarios namely (i)

medium-density of dishonest/Sybil cars and (ii) high-density

of dishonest/Sybil cars.

In the medium attack scenario, the density of Sybil

cars is 30% of the total number of cars reported to the

routing algorithm. This attack is not capable of creating a

complete “virtual” congestion on the highway. Therefore,

the non-secure system routes some of the injected vehicles

through the highways (which have light traffic conditions

during that time) and the rest of the routed vehicles to the

sideways leading to massive traffic on the sideways and a

corresponding increase in the average travel time. On the

contrary, we note that the proposed resilient traffic estimators

can correctly estimate the state of the traffic system and route

the added vehicles to the highway which has a light traffic

condition (until 8:23 am when the traffic congestions on the

highways start to increase). We note that the majority-voting

based scheme lead, in general, to a comparable performance

compared to the SAT-based scheme except for the time 8:06-

8:13 am.

On the other hand, in the high-level density attack scenario

(where the density of Sybil cars is 80% of the total number

of cars reported to the routing algorithm), the attacker is

capable of creating a complete “virtual” congestion on the

highway. This high congestion is enough to enforce the

non-secure system to route all the injected vehicles to the

sideways creating actual congestion on the sideways. This,

in turn, leads to a considerable high average travel time

equal to almost one hour. On the other side, we note that the

SAT-based scheme, except for few instances, can correctly
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Figure 6. Results showing the average travel time for routed cars using the proposed scheme (left) medium density dishonest/Sybil attack scenarios and
(right) high-density dishonest/Sybil attack scenarios.

estimate the highway congestion leading to maintaining the

same performance regardless of the density of the attacked

vehicles. We also note that the performance of the majority-

voting scheme degrades compared to the medium-density

attack scenario reflecting the fact that the heuristic, unlike

the SAT-based scheme, is not guaranteed always to find the

best subset of cars.

VI. CONCLUSIONS

In this paper, the problem of estimating the state of

the traffic system from maliciously corrupted crowdsourced

information is considered. Attackers are assumed to be able

to report malicious data and report the presence of Sybil

cars which do not physically exist in the traffic network.

We proposed a physics-based trust propagation scheme in

which the unreliable and sporadically available information

from the legacy sensors are used as a root-of-trust to sanitize

the crowdsourced information. The result is an estimation

algorithm that is resilient to such attacks while being able

to compute the optimal estimate of the traffic state. The

proposed scheme is analyzed to show optimality and ver-

ified using real traffic data collected from the Italian city

of Bologna. Simulation results show that our scheme can

reduce the average travel time during rush hour from an

hour to a few minutes.
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